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.-A Transfer 

Exact calculations using transfer matrices on finite strips are performed to study 
the two-dimensional problem of site percolation clusters with an attractive 
nearest neighbor interaction. Thermodynamic quantities such as free energy per 
site and specific heat are calculated. Finite-size scaling with two strips of 
different widths yields very accurate approximations of the critical line and the 
correlation length exponent. The result shows clearly a site percolation fixed 
point at very high temperatures, a random animal fixed point at intermediate 
temperatures, a O point for the collapse of lattice animals at lower tem- 
peratures, and a compact-cluster fixed point at the lowest temperatures. 
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1. I N T R O D U C T I O N  

Recently there has been interest in the collapse of branched and linear 
polymers.<~ 5) Due to attractive forces induced by interactions with the 
solvents, polymers can undergo a collapse transition at low temperatures. 
The corresponding tricritical point O had been studied for a long time. For 
further references, see ref. 1. Derrida and Herrmann ~1) calculated the 
collapse of branched polymers in two dimensions using the transfer matrix 
on finite strips. They found the thermal correlation length exponent 
v~ ~0.5095 and the crossover exponent ~b=0.657. Coniglio ~6) formulated 
the problem of branched polymers in a solvent into a Q-state Potts model. 
Using the Migdal-Kadanoff renormalization group, he found for Q = 1, 
which should correspond to percolation, the following four fixed points: a 
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percolation fixed point, a random animal fixed point, a tricritical O point, 
and a compact-cluster fixed point. At the O point he found vx ~0.51, in 
agreement with ref. 1, but a much smaller value for r 

The calculation presented here is an independent check of Coniglio's 
calculation. The method is a straightforward generalization of the transfer 
matrix calculation of ref. 1 and therefore the exposition also follows closely 
that reference. 

Rather than introducing attractive interactions into lattice animals 
as was done in ref. 1, I introduce it into the percolation clusters by the 
following generating function: 

G(p, T ) -  ~ Au, t(B)pUqt[y(T)] B (1) 
N,t,B 

where AN, t(B ) is the number of animals with N sites, t perimeter sites, and 
B bonds, y(T) is related to the temperature T b'y 

y(T) = exp(1/T) (2) 

p is the occupation probability for a site, and q = 1 - p. Here we consider a 
bond to exist between any two nearest-neighbor occupied sites of the 
animal. 

If we define the partition function ZN of a percolation cluster by 

Z u -  ~ AN,,(B) q'[y(T)] B (3) 
t,B 

then (1) can be rewritten as 

G(p, T) = ~ Zup u (4) 
N 

From (4) we see that the critical line p(T) is given by 

lim /3(T)(ZN) l/N= 1 (5) 
N ~ o o  

From (5) it follows that the free energy per site f ( T )  defined as 
ZN= e -N~r)/r is given by 

f ( T )  = - TN-  x log ZN = T log [/3(T)] (6) 

A simple quantity wich contains the geometrical information is the 
correlation function go, R(P, T) defined by 

gO, R(P, T) =-- ~ pNq'[y(T)]B ~O0,R(N , t, B) (7) 
N,t,B 
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where COo, R(N, t, B) is the number of different configurations of an animal 
of N sites, t perimeter sites, and B bonds which connects the points 0 and R 
of the lattice. The additional condition of connectivity is the only difference 
between definitions (1) and (7). As in the case of usual percolation, (7) one 
can show that if p </~(T), go, R decreases with R exponentially. This defines 
a correlation length ~(p, T), 

go, R(P, T),v exp[ - IRI /~(p ,  T)] for large R (8) 

One can show that ~(p, T) diverges when p --*/3(T) in the manner 

~-l(p, T ) ~  I b ( T ) - p l  v (9) 

with an exponent v. 
I shall use strip geometries to do the calculation. For such geometries, 

the lattice is infinite in only one direction. In the next section I shall explain 
the transfer matrix technique for this problem. 

2. T R A N S F E R  M A T R I X  FOR P E R C O L A T I O N  C L U S T E R S  

We calculate exactly the correlation length ~n(P, T) defined in (8) on 
an n x oe strip by means of the transfer matrix. Following closely ref. 1, we 
have that the transfer matrix M gives the recurson relation between the 
go.R(C), where C is a connectivity configuration of the sites of column R: 

go, R + 1(C) = ~ M(C, C') go, R(C') (10) 
C '  

The size of the matrix can be strongly reduced by the use of symmetry 
operations. An example is given in the Appendix. As M does not depend on 
R, one can, once one has constructed M, calculate go, R by iterating (10). If 
2 is the largest eigenvalues of M (2 is positive), each go, R has the following 
behavior: 

go, R ~ 2  R for large R (11) 

This means that for strips of width n, the correlation length ~n(P, T) is 
given by 

~,(p, T )=  - ( log  2 ) - '  (12) 

In this paper I will only consider normal strips on the square lattice, i.e., 
strips in the (1, 0) direction. 
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3. C A L C U L A T I O N  OF T H E R M O D Y N A M I C  P R O P E R T I E S  ON 
STRIPS 

From (6) we see that the free energy per s i te f , (T)  of the cluster in the 
limit N ~ oo is given by 

f . ( T )  = Tlog[p , , (T)]  (13) 

where/~n(T) is the smallest positive value p for which 

2[p , (T) ,  T] = 1 (14) 

Therefore the energy e, and the specific heat c, are given by 

e,, = N - ld log ZN/d(1/T) = d [ f . (T ) /T] /d (1 / r )  

= - T 2 d l o g  f f . (T) /dT= -T2pn(T)  - t  dpn(T)/dT (15) 

c,, = de,,/dT= -2T ,~m dff,,/dT + T2~n Z(d~,,/dT) 2 - T2~ff t dZ~,,/dT 2 

(16) 

Equations (15) and (16) differ from Eq. (17) and (18) of ref. 1, which 
presumably are misprints. Figure 1 represents c~ as a function of tem- 
perature for several strip widths. The specific heat has a peak, which, as n 
increases, gets sharper and also increases in height. The position of the 
peak decreases monotonically with n and seems to approach a transition 
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Fig. 1. Specific heat c. against temperatire for different strip widths n. 
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temperature between 0.6 and 0.5. Comparing this figure with the 
corresponding Fig. 2 of ref. 1, one sees that for the same n, the height of the 
peak is lower here for percolation clusters, but the positions of the peaks 
are close to each other in the two cases. 

4. TWO STRIP RENORMALIZATION, CRITICAL LINE 

Let us make the usual assumption of the phenomenological renor- 
malization that (8) 

(,,(p(T), T)/n = (m(p(T), T)/m (17) 

Applying (17) to two strips of width n and n -  1 and fixed T, one obtains 
for each n the estimate for the critical line/~c(T) shown in Fig. 2 and 3. 

0,12 L 

0,10 

0.O8 i 

i 

0.0 5 

0.04 

0.02 

Fig. 2. 

0.00 0.6 0,8 T 1.0 1.2 

Value of/~c(T) at  which the :o r re la t ion  length diverges  aga ins t  t empera tu re  ob ta ined  
for an  n to n - 1 renorrna l iza t ion  for different pa i rs  of values n, n - 1. 
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Same as Fig. 2, but  against log T, for large values of the temperature T. 
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Fig. 4. Exponent  v of the correlation length against temperature obtained from an n to n - 1 
renormalization for different pairs of values n, n - 1. 
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Figure 2 plots bc(T) vs. T for small T. Comparing this figure with the 
corresponding Fig. 6 of ref. 1, one sees that for small values of T our/3c(T ) 
is very close to the lattice animal critical line 2c(T). But for very large 
values of T, fic(T) shown in Fig. 3 approaches the percolation value 
ff~(oo ) = 0.59274. (7) 

With the two-strip renormalization one can also calculate the 
exponent v by looking at the derivative 2' of the eigenvalue with respect 
tO p,(7) 

v n - ' =  1 +log[()~',,/2,,)/(2',,_,/2n_a)]/log[n/(n-- 1)3 (18) 

This v is presented in Fig. 4 and 5. From Fig. 4 we see that at low tem- 
peratures one clearly obtains the exponent 1/d, where d is the spatial 
dimension. From Fig. 5 we see that at very high temperatures, the per- 
colation exponent v ~0.135 (7) is asymptotically approached for large n. At 
about T =  0.550 there seems to be a point where all curves cross with a 
value of the exponent of about v ,,~ 0.513. These values are very close to the 
ones found for the collapse of branched polymers in ref. 1 : T ~ 0 . 5 3 5  and 
v ,~ 0.512. For  T a little above this point the exponent increases sharply to a 
value which for n = 7 is about 0.77 and the tendency is toward even higher 
values for larger n. The strong change of v around T ~  0.550 indicates that 
this is the theta region. The estimate for the exponent vl is taken to be the 
point where all curves cross, i.e., vl ,~ 0.513. The estimate for v 2 is taken to 
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Fig. 5. Same as Fig. 4, but against log T, for large values of the temperature 7'. 
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be the peak value of v, i.e., v 2 ~ 0.77 for n = 7. The crossover exponent is 
then given by 4' = Vl/V2 ~0.66. Comparison of Fig. 4 with Fig. 7 of ref. 1, 
shows that they are very similar. We therefore conclude that the collapse of 
branched polymers and the collapse of percolation clusters are indeed the 
same. 

From Fig. 5 we see that v, has a minimum at values of log T between 
1.0 and 2.0. The value of vn at this minimum is about 0.7. With increasing 
n, this minimum tends to approach the lattice animal value v ~ 0.64 {7) with 
log T ~  1.5. From Fig. 3 we see that at this value of T,/~c(T) ~ 0.25, which 
is the critical fugacity for lattice animals on the square latticeJ 7) This value 
of v corresponds to the exponent for random lattice animals. The present 
calculation therefore confirms the conclusions of Coniglio. (6) 

5. C O N C L U S I O N  

The present transfer matrix calculation of site percolation clusters with 
attractive nearest neighbor interaction confirms the conclusions of a 
tricritical Potts model at Q = 1 using the Migdal -Kadanoff  renormalization 
group. This shows that the tricritical Potts model at Q = 1 is in the same 
universality class as the collapse of branched polymers at the O point. For  
the tricritical Potts model at Q = 1, Nienhuis {9) had conjectures, based on 
the Coulomb gas method, Vl = ~b = 8/15 = 0.533 .... This means that both the 
present calculation and that of ref. 1, which gives v1~0.5095 and 
v2 ~ 0.657, are significantly different from Nienhuis' conjecture. 

A P P E N D I X  

In this appendix I give as an example the transfer matrix for site per- 
colation with attractive nearest neighbor interaction on a strip of width 4 

�9 �9 �9 �9 �9 �9 

�9 �9 �9 0 0 0 

�9 �9 o �9 X o 

Fig. 6. 

�9 0 0 0 0 0 

A B C D E F 

The six different configurations that can occur in a strip of width n = 4. ( �9 ) Occupied 
and connected sites; ( x )  occupied and not connected sites; (O)  empty sites. 
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with periodic boundary conditions. I follow the same method as in ref. 1. 
First I list all the possible configurations at column R (see Fig. 6). Due to 
the periodic boundary conditions, only six configurations remain. Then 
one relates the probabilities AR, BR, CR, DR, ER, and F R of these 
configurations at column R to their probabilities at column R + 1: 

AR+t = 

BR+I = 

C R +  1 

DR+ 1 = 

ER+ I = 

FR+I----  

p4qS[(y3A R 4- y2B R + yCR + YDR + yER + FR)] 

p3qy3[4y2AR 4- (y2 4- 3y) BR + 2(y + 1) 

x CR+ 2(y 4- 1)DR + (2y+ 1)ER+ 3FR] 

p2qZy2[4yAR + 2(y + 1) B R + (y + 2) CR 4- 4DR + 2ER + 2FR] 

p2q2y2(2AR + BR + DR) 

PZq2y(BR + 2CR + yER + FR) 

pq3y(4AR + 3BR + 2CR + 2DR + ER + FR) 
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